
A CTO reflects on the

evolution of middleware

Nick Denning
Chief Technology Officer
Strategic Thought

Management introduction
Nick Denning is the Chief Technical Officer of Strategic Thought (Wimbledon, UK)

which he founded in 1987, having previously worked for Logica. Strategic Thought,

since inception, has been involved with ‘big software’, from Tuxedo (in its various

guises/owners including BEA where the company helped BEA set up in the UK and ran

its European support center for a year) to Oracle to IBM and Microsoft.

Strategic Thought initially was primarily a services provider with a specialization in high

availability and transaction middleware implementations. In 2001 Strategic Thought

launched its first product, called Active Risk Manager. This is now a leading enterprise

risk management solution, with customers from backgrounds as diverse as NASA,

Lockheed Martin, the UK’s Ministry of Defence, London Underground, Thames Water,

Nestlé and BP.

In this discussion, Mr. Denning reviews 20+ years of working with middleware (of one

form or another). He looks back, but also forward to examine what is happening today

and what he thinks must evolve for tomorrow. In particular he emphasizes the need for

a rethink of the role and responsibilities for ‘architects’ within an enterprise.

2

All rights reserved; reproduction prohibited without prior written permission of the Publisher.

© 2007 Spectrum Reports Limited

Where it started …
From my perspective, middleware became serious with the

development of communications interfaces between appli-

cations using TCP/IP in the late 1980s, primarily driven by

the City’s need for high speed communication of price data

feeds between financial applications and those provided by

the likes of Reuters. Once one organization implemented

these interfaces, suddenly we saw many organizations

implementing similar interfaces. To do this, however, most

were ignoring the reliable and available products — such as

SNA and DECnet — which were platform dependent and

instead were ‘rolling their own’ solutions on UNIX, which

was a substantial challenge. Yet this willingness to ‘roll

your own’ was the basis for much subsequent innovation

— the technology was good and did what it said ‘on the

tin’ — but it still needed substantial coding to provide high

throughput and to be robust and reliable in the event of

failure. Quality of services without transaction integrity was

an often ignored problem.

These early ‘roll your own’ IP implementations were often

well done. But they were also extremely difficult to main-

tain, not least because they were delivered by some of the

cleverest people around who had no pressing commercial

need to make the results simple. I saw people using DEC

technologies to communicate between mainframes using

DEC MessageQ and similar techniques. But this was hor-

rendously complicated, and expensive, to keep running.

Once this was realized there was a strong move to produc-

tize these communications interfaces.

A simple alternative was FTP. This was rapidly accepted and

became trusted. Much systems integration was done —

indeed is still done — by the exchange of files. The fact that

FTP was free and rapidly available on almost all platforms

— certainly once UNIX had become popular, including the

proprietary versions — created one of the earliest and still

most accepted forms of middleware standards. One conse-

quence is that we still have a huge legacy of FTP implemen-

tations, which remain productive today (file transfer is

easily understood and undertaken). However FTP is also

dangerous because of the same quality of service problems

associated with shell scripts that fail to trap and manage

errors during communications.

Around the early to mid-1990s, the SQL-net technologies

became established, supporting the two tier client/server

architecture of database applications. Indeed, for a while,

many people thought middleware was ‘just about’ SQL

connectivity. When organizations tried to increase the

number of users accessing two tier applications across a

slow WAN, Transaction Processing (TP) monitor application

— such as CICS, TUXEDO and ENCINA — began to be

deployed on the new open systems as key enabling middle-

ware for standard business applications. TUXEDO domi-

nated as the enabling n-tier application middleware of

choice (until it was finally superseded by multi-threaded

J2EE and COM/MTS application servers). It was an excellent

and highly reliable middleware technology that was equally

frequently underrated. Although in some ways it had simi-

larities to SQL, its key difference lay in the way it enabled

applications to communicate using the ATMI API. Applica-

tions linked via this API could be decomposed so that one

could place these to minimize network traffic and message

latency. The messaging capabilities also enabled applica-

tions holding a database connection to receive instructions

from many users, process the task on behalf of the remote

user and return the reply — thus removing the dreaded

cursor processing across the network and enabling tens of

thousands of users to access a database which had a limit

of (say) 500 concurrent connections.

DCE (the Distributed Computing Environment) tried to

bring standards to this market. Although the technological

base was sound, DCE was too complex; it used fundamen-

tally synchronous communications (when TUXEDO had

both synchronous and asynchronous models) and was diffi-

cult to understand. The result: it never quite got going, par-

ticularly with the arrival of Java and the benefits of

compile-once, deploy many-times approach.

The next big middleware breakthrough was DCE’s antithe-

sis — the introduction of reliable asynchronous message

queuing. This occurred with the introduction by IBM of

MQSeries (now known as WebSphereMQ) around 1996 (it

had a 10th Anniversary celebration in 2006). The concept

of asynchronous messaging was a big move forward

because it enabled developers to decouple applications and

to buffer messages. This meant that applications could ‘fire

and forget’ in the certain knowledge that the reliable queu-

ing and message transfer would not forget any messages.

One consequence of synchronous messaging is a huge net-

work of applications where, if any one element (hardware,

operating systems, communications, database or applica-

tion) fails, then its associated applications fail as well. Syn-

chronous processing had been, and in many ways still is,

the dominant form of inter-application communication (it is

certainly the form that most developers understand, how-

ever ‘inefficient’ it can be in a distributed environment). It is

also much simpler to program.

Asynchronous messaging decoupled these elements. It was

in stark contrast to most roll your own implementations

which were synchronous — you called another application

and you waited until the response returned (and, if no

A CTO reflects on the evolution of middleware

3

response returned, you stayed waiting). Decoupling simpli-

fied at many levels. Yet developers also had to think

through the potential issues when using the asynchronous

programming mechanism within an application, such as

those associated with timing, causal effects of order and

time and the complexity of locking, blocking and multi-

threading. Even now this explains the relatively limited and

slow take up of AJAX and publish and subscribe.

Microsoft confirmed the validity of asynchronous messag-

ing when it introduced MSMQ and included it within its

Windows NT and Server 2000 products. In my personal

view I believe Microsoft missed the point with MSMQ — in

that it (MSMQ) was and is a Windows-only technology. The

whole point of asynchronous application messaging tech-

nology lies in its ubiquity, the ability to communicate

between all the platforms in an enterprise (for example

MQSeries supported within a few years some 20+ operat-

ing systems offered by multiple different vendors). Except

for small businesses, there were and are relatively few busi-

nesses that only possess Windows; most organizations had

or have some UNIX or mainframes or older platforms like

Tandem or Stratus. Message queuing works when applica-

tions on all of these can intercommunicate — which pretty

much explains why MSMQ waned while MQSeries won

most of market share (and skill support).

Evolving to EAI, brokers and buses
Towards the end of the 1990s middleware was established.

There then arrived a semi-chaotic time when there many

vendors chasing different specialties in the Enterprise Appli-

cation Integration middleware space. Examples included

New Era of Networks (NEON), Mercator, SeeBeyond, Cross-

worlds, webMethods, Sonic and many others (many of

these have now been acquired by larger players).

The basic technology of middleware messaging was its sim-

plicity. It was possible 15 minutes after you put the CD in

your machine to be productive. However, what had started

as being simple — enabling a small number of applications

to work together — was often not architected and rapidly

became a highly complex spider’s web of multiple point to

point connections between applications. Furthermore dif-

ferent vendors’ middleware did not talk to each other. Ven-

dors even promoted this — despite customer distaste — in

the vainglorious hope of establishing a market dominance

that could not be arrested or overthrown. All understood

that overcoming the problems and inefficiencies that appli-

cation silos represented was a huge business opportunity.

It did not take long thereafter for the concept of a bus or of

a hub to arrive. These are concepts that are often confused.

To me a bus is a backplane, where anything can communicate

with anything directly; a hub is a central point of communica-

tions through which everything communicates (though that

can become a single point of failure potentially). From a

topology viewpoint you can argue that there is no real dif-

ference. To me the primary difference lies in the concept of

order:

� if you communicate through a hub to send a

message to somebody else, all messages are

always delivered in the same order in which

they reached the hub

� on the other hand, if you use a bus and your

connection between A and B fails, the connec-

tions between A and C and C and B can still be

still working; while A cannot send anything to

B it could be sending to C and C could be send-

ing to B (in effect making the assumption that

A has the same view of the world that B does,

which is no longer true while A to B is down).

This has some subtle but fundamentally important implica-

tions. In addition, there are some genuinely interesting (if

obscure) logic traps in the whole EAI/hub/bus middleware

space as a consequence of those types of difference. Too

often these were insufficiently explored, sometimes with

disagreeable consequences for user organizations.

That said, hubs were and are effective, even if they did

introduce a single point of failure. Similarly, buses worked,

so long as you architected to avoid introducing uninten-

tional ordering issues. The result was a growth of Business

Continuity/Disaster Recovery (BC/DR) approaches to pro-

duce reliable and predictable hubs and backbones and

hubs and buses to eliminate single points of failure or of

ordering issues.

That said, it can be argued that the interest here was about

infrastructure. At this time there was little or no business

logic, just better and improved middleware technology.

Top down or bottom up
Technologists usual work bottom up to provide enabling

technology. Middleware was similar at its start. This, how-

ever, suddenly changed because of the difficulties encoun-

tered delivering working middleware solutions which

needed to carry transactions across the enterprise. The first

middleware solutions were often delivered to enable data

replication when the data was not in a form that could be

replicated by standard RDBMS products. The message pay-

loads needed intelligent routing, transformation and often

protocol conversion. This was essentially the EAI offering —

4

stateless processing of messages between applications.

Middleware designers flipped. Their thinking became top

down, focusing on the implementation of a business

process controlling the movement of messages from appli-

cation to application and enabling transactions to be

tracked across the business — stateless middleware had

become stateful.

Hub and bus products attracted because they offered new

capabilities for connecting applications and overcoming the

application silo barrier. But they also forced organizations

to rethink, from the top down rather than from the tech-

nology up. This is where the attraction to business

processes arose, together with all the ‘objects’ that are

associated with each business process. From this evolved

concepts like global objects, global business objects and

application-specific business objects. The intention was to

enable business objects to communicate with other appli-

cations so as to fulfill the business process. To me this was

a breakthrough in and around middleware. It opened gen-

uinely new doors to thinking about how businesses

deployed and used IT. The downside was that much of the

thinking required was complicated, and lost to most IT (and

business) people.

The fax machine effect
At this point let us look at the impact of middleware from

the point of view of the ‘fax machine effect’. The fax

machine was, and is, an important piece of middleware

(even if it is not software). Think of all the times that orga-

nizations receive a fax of data from one system which is

then re-entered into another system (the number of times

this happens, even today, remains enormous). In effect, the

fax machine with its users was the original middleware —

sitting between two (or more) applications.

In addition, the fax machine represents a starting point for

a particular style of execution and acceptance of middle-

ware. A significant factor in the adoption of the fax was, I

have been told, due to Wal-Mart which mandated that if

you wanted to do business with Wal-Mart you had to com-

municate by fax. This swiftly accelerated the take up and

acceptance of fax machines. After the fax machine,

increased automation has come to be applied. Today, the

need for all Wal-Mart suppliers is to be able to work with

AS2, an Internet enabled implementation of EDI. If you

cannot use AS2 you cannot supply Wal-Mart.

In effect, the introduction of much middleware is being dri-

ven by a small number of large businesses deciding what

suits their business processes, and then requiring suppliers

and partners to adopt this. As those suppliers and partners

make the changes to satisfy the likes of Wal-Mart (but this

could be General Motors or Ford or Boeing or Unilever or

…), then that technology trickles into the infrastructure of

suppliers and partners — and is re-used. In effect a few

decisions (made by a relatively small number of big organi-

zations) to adopt open protocols at the technology

exchange level (to satisfy their business process require-

ments) is driving middleware changes in customer, supplier

and partner organizations.

Once a middleware standard becomes adopted for com-

munications between organizations I think this has a signif-

icant impact on proprietary providers, particularly as AS2 is

a standard which enables different products to communi-

cate. It is not necessary to have the same product at both

ends. This approach is the primary benefit of the Web stan-

dards approach even though intercommunication between

individual products continues to be a challenge.

The past 5 years
The collapse of the dot.com boom forced many changes,

not least in the ways that organizations spent on IT. In

Strategic Thought’s case, this was good for business as

organizations focused on using their existing assets by

building middleware interfaces to exploit the capabilities

they provided, rather than on new developments. We saw

many middleware projects start to take off post-Y2K, and

we have been busy at it ever since. I think the real issue

about market consolidation, after the dot.com bubble, was

that the likes of IBM and Microsoft realized how important

middleware was and produced heavyweight products

which captured a significant percentage of the market

when uncertainty — some originating from the dot.com

crash itself — occurred. There was the feeling that ‘if our

business is so dependent on this middleware, we will buy

from the heavyweights (like IBM, Oracle and Microsoft)

because we know we can rely on them to continue to

exist.

Initially these interfaces were ad-hoc but increasingly they

are being build to deliver Web Services interfaces, particu-

larly as the Web Services standards evolve to provide secu-

rity, quality of service, instrumentation and other

capabilities required for business. This approach also

promises much for the implementation of components

breaking down the application silos that EAI seemed more

to cement in place rather than supplant.

Where did the move to Web Services come from? This is an

interesting question, for in many ways their arrival was

both unexpected and unprecedented — given what had

occurred in the previous 5 years of dot.com feasting.

A CTO reflects on the evolution of middleware

5

In my personal view, Web Services are one logical outcome

from the frustration caused by there being too many mid-

dleware vendors. Customers were increasingly frustrated

that all this middleware — that was to enable integration

— did as much to prevent it as to deliver.

Whatever the origin of Web Services — and there have

been many contributors and players, from Sun with Java to

the Global Grid Forum to IBM to the open source commu-

nity to the W3C and OASIS — Web Services represent the

start of the IT industry (users and vendors) joining together

and meaning ‘we need a set of standards’. Committees

were formed, which performed real work. From these com-

mittees, Web Services concepts, definitions and then

implementations started to arrive.

The key point was, and is, that if you have standards, then

people, processes and applications can communicate. This

is the whole point to integration. Having made that point,

it is also true that within the Web Services world (thus far)

there has been painfully little that exploits asynchronicity. In

one sense Web Services have taken huge strides forward.

But in reverting to ‘what everybody knew’ (synchronous

processing), the advances have not been as great as most

of us would wish.

Yes, Web Service thinking exists about buffer services,

cacheing and various alternatives which might mitigate

synchronicity. But these do not add up to fully fledged

asynchronicity. This is something to be regretted.

A point also on the Web Services standards. They seem

quite complex and I do not pretend that they are my bed

time reading. I am generally skeptical of committees and

we often refer to the camel as the race horse designed by a

committee. However, while the horse runs faster in good

conditions, in the desert when the going gets tough the

horse dies and the camel survives. So, I think, it is with the

work of these standards committees.

In 2007 and 2008
Superficially, and looking from the outside, the middleware

arena may appear to have gone quiet — at least by com-

parison to the froth and noise of the late 1990s. That is not,

however, how I see it.

There really is a huge amount going on around the middle-

ware space. The big difference is that this is not so much

about technology. Instead the focus is on the business and

its processes, architecture, the interfaces between compo-

nents in the architecture and the mechanisms to enable

components to communicate across those interfaces.

The really important aspect of having middleware is that it

enables us to build applications which can span the enter-

prise and therefore are far more complex than a single

departmental application.

Thus the problem space (that middleware has enabled us

to start to address) is becoming larger and larger and

larger. At Strategic Thought one of the biggest challenges

stems from this. We see our clients simply not possessing

the people with the methodologies to build enterprise wide

solutions. (Think how large a task it is to roll out SAP across

an enterprise, let alone design a new solution of this scale.)

This is particularly apparent when whole enterprise

processes are involved as no one person in the organization

has a full grasp of the process.

I have been asked to attend many conferences around how

to deliver. Typically there are 300-600 people in the audi-

ence. The discussions are wide ranging but are generally

inconclusive. Everybody has a vested interest. All think their

point is really important, but significantly, most fail to

understand the interests of their colleagues. It is impossible

to get everyone to have a common view of the problem

because it is too large. Rather, these problems need to be

decomposed into manageable chunks. Once decomposed

into manageable portions, one can address each problem,

in turn, in a series of steps.

We see what we often call the adoption-curve challenge.

This is a concept issue. The people who are coming to use

middleware do not know much about it, or how to exploit

it. We have found too many projects running into real

problems in the early stages, not with making the middle-

ware work but with understanding the underlying concept

of business processes, how you map interests within and

beyond a business.

Let me offer an (anonymous) example. One of our clients, a

large bank, had created a middleware team to develop a

specific solution. That team, apparently, produced nothing

for a year. The rest of the bank organization started to say

‘you guys have spent $3M-4M, and delivered nothing’.

Yet, this team had been working extremely hard and it was

producing. Much of what was being created was concep-

tual, laying out the ground rules for how future implemen-

tations should occur. But it (the team) had made a vital

mistake: it had not focused on obtaining and delivering an

early win to give the rest of the bank the confidence that

their activities were worthwhile and justifiable. Strategic

Thought was able to assess and report on the good work,

then assist in focusing on the deliverables — with the result

that the project was successfully delivered and met its sub-

stantial ROI criteria early.

6

Skills and understanding
From another perspective, some time ago Strategic

Thought was retained by a medium-sized insurance com-

pany. We tried to take this insurance company’s people

conceptually from ground zero (where they were then) to

where they wanted to be — in two weeks of discussion

and presentations. Not to put too fine a point on it, this

insurance company’s people did not ‘get it’. Our work was

terminated.

About 18 months later I met up with that organization

again. It had taken them that long to come to grips with

the concepts I had been trying to introduce to them in that

two-week period. In effect we had overwhelmed them.

Theory is no substitute for practice. They were not capable

of accelerating from 0-60 in 2 weeks; they needed the full

18 months. Put another way, ‘you cannot have a baby in

one month if now is when you become pregnant’. Certain

things take time.

There is, therefore, a real adoption-curve challenge about

how organizations take on new Web Services technologies

and see through the design and then implementation. This is

particularly true in end user organizations where loyalty

and dedication to support a system over many years is

highly valued and creates a resistance to change and fear

of the unknown, by comparison with the services industry

where a person’s fee rate is often determined by his or her

knowledge of the latest in demand technology.

The logical arrival of the ESB
In reality what we really have is a requirement for excellent

architecture. This must be able to decompose any given

whole problem space into smaller sets of problem spaces

— where each one is each big enough, well enough

defined, appropriately sized and with the necessary inter-

faces (human and system) — that an organization can rea-

sonably expect a team to deliver.

In effect what I am saying is that someone has to commit

to spending money on an architecture team. That architec-

ture team then has to sit between the business users and

the developers. It must work very carefully and closely with

the business users, and equally closely with the developers.

It must create projects with budgets which are deliverable

and ensure that developments conform to the architecture.

The environment in which architects must now work is not

the same as it was ten years ago.

Indeed, I will go further. I find that many people consider

middleware solutions as just another application. This influ-

ences their thinking: they seem to expect to throw

US$200K, US$500K, US$1M or whatever, and have ‘it’

resolved. Middleware should not be approached like this.

The difficulty is that if you do approach it like this you

almost always ensure that the outcome will be yet another

silo or stovepipe — which is exactly what middleware and a

suitable architecture are trying to overcome. There is no

doubt that this is a challenge, but it is a necessary one.

The good news is that I have seen the architecture model

work. One large telephone company for whom we worked

had an excellent architecture team in place. But even that

does not always ensure success. In this telephone com-

pany, the challenge was that the business would say to the

architecture team ‘we want this’. The architecture team

would say ‘well, to do that properly is going to take 10

months and cost US$3M’. Too often the business people

would then go (behind the back of the architecture team)

directly to the developers who would respond: ‘No prob-

lem; we can knock that up in a couple of months for

US$400K’. Despite the excellence of the architecture team

the result would be yet another stovepipe which was either

incapable of subsequent integration into the business

process or would cost even more to integrate than the orig-

inal estimate. (This has shades of EAI, as discussed earlier.)

What I am really talking about here is the evolution of the

Enterprise Service Bus concept and the implementation of

business processes around this. This was what Crossworlds

was all about — automating business processes across a

bus, hooking in user interfaces and invoking those underly-

ing services when the business process needed those

underlying services. The change here is that the orientation

was business-process-oriented.

Unfortunately this is not easy for people to grasp if they

have not thought in this way for a while. In turn it makes

the architecting and planning of solutions that much

harder. The essence lies in the concepts and if you or I do

not comprehend the concept, we are not talking the same

language.

Yet this is an area of extreme productivity. In my view,

owning Enterprise Service Bus middleware competence is

going to differentiate service providers.

Recreate the architect
Having said all this, I often ask myself how many organiza-

tions are making the type of investments that I am talking

about? When I am honest with myself, it is only a few. This

is a challenge, not least because embracing and following

through with an architectural approach requires discipline

and is difficult. Even today it tends to be software vendors

A CTO reflects on the evolution of middleware

7

who come in saying ‘our SOA — or ESB or whatever —

products can do all of this for you’ while they try to find a

‘low point for entry’.

What I am not seeing is demand being driven by businesses

asking ‘how do we deliver an architecture plus obtain a

better return on investment?’ Businesses are demanding

solutions driven by the need for automated work flows but

relatively few are putting in the architectural investment,

because they do not understand what is required to engi-

neer that architecture. People say the words.

To most people, an architecture is just a technical architec-

ture or even just a list of products. It is too similar to a

‘strategy’ which is ‘Oracle’ or ‘IBM’. What does this mean?

Yet the reality is that this is what too many people are

thinking.

There are, therefore, some real ‘connection gaps’. Part of

the problem is that everybody thinks that because we all

wear suits, everybody who wears a suit must be a good IT

person. The range of quality of expertise in the IT sector is

highly variable with a level of engineering capability that

remains relatively low. The fact is that implementation

specifications are weak. This is associated with complexity

and the inability to break down a big design into smaller,

manageable elements. In my personal view, we need a new

job description of ‘Business Architect’. Too often today, the

term ‘IT architect’ is used when all it really means is

‘designer’.

Lessons learned
My first lesson learned is that the issue of the adoption

curve is one that is critical at the moment. It takes time to

do deliver complexity. It takes time for people even to

understand the underlying concepts: what is the problem

you are trying to address? Yes, there are different ways in

which you can achieve this, depending on the caliber of the

people you have. But what is utterly important is to find a

way, in any implementation, in which you can bring

together ideas at many different levels, from many differ-

ent perspectives, about what you are trying to achieve.

Almost as important is the need to create small projects

which enable the stakeholders to participate and under-

stand why certain decisions and actions are being taken.

Just as Rome was not built in a day, so people must have

the time to evolve and learn. Technology solutions are

capable of far more than people are able to grasp or

organizations are able to implement. We must address the

many conceptual gaps that persist.

Another area where experience says we need change is

that too many people are still thinking narrowly about the

delivery of functionality. Organizations do not seem to

want to invest in ‘nonfunctional enhancements’, except in

extremis (like for security when it is too late or redundancy

and fail over after the solution crashed and was unavailable

or upgrading to the current release after having been hit by

triple support costs for ‘out of support’ products).

So, for me, the core issue today is about how to:

� break problems up into manageable chunks

which can be understood

� bound these chunks with interfaces which can

be the limit of understanding for everyone else

� work out which of the standards a designer or

an architect needs to implement

� place the focus on implementation in short

phases to enable flexibility and the ability to

meet the business’s most urgent needs.

The technology part is easy (relatively). The real challenge

lies in the design approach. Business architects are a neces-

sity — and all organizations are short of these.

Management conclusion
From Mr. Denning’s perspective the real issue about mid-

dleware is that it should enable the decoupling of applica-

tions and thereby the satisfaction of the business processes

that are the heart of any organization’s ability to function.

When you cannot change either ends — perhaps because

the client end and the server end are in different organiza-

tions — there is a constant and real risk that middleware is

inhibiting business flexibility. This is no longer acceptable to

most organizations.

In addition, he makes the point that the role of the IT archi-

tect must change. This role must take on a greater ‘busi-

ness process’ dimension and sit between business users

and developers. Such architects should also be the custodi-

an’s of observance of the enterprise architecture.

Middleware may seem to have disappeared from the radar

screen that covers publicity. Nevertheless, as Mr. Denning

shows, middleware is alive and very much kicking, albeit

addressing ever larger problem spaces.

8

